Engineering Studies ATAR (Mechanical) 2022

Unit 1 exam

Structure of this paper

ructure of this paper				Marks	Percentage
Section	Number of questions available	questions to	working time		of exam
Section One: Core content Part A: Multiple-choice Part B: Extended answer	10 3	10 3	10 50	10 9 45 36	10 9 30 24
Section Two: Mechanical Part A: Multiple-choice Part B: Extended answer	10	10	10	10 9 88 77	10 9 50 43.75

Instructions to candidates

1. Answer the questions according to the following instructions.

Sections One and Two, Part A: (Multiple Choice)

Answer all questions in this Question /Answer Booklet. For each question circle the letter to indicate your answer. Use only a blue or black pen to shade the boxes. If you make a mistake, place a cross through that circle, do not erase or use correction fluid, and circle your new answer. Marks will not be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question.

All other components of Exam:

Write answers in space provided in this Question/Answer Booklet. All questions must be answered.

- 2. You must be careful to confine your responses to the specific questions asked and to follow any instructions that are specific to a particular question.
- 3. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
- · Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e., give the page number. Fill in the number of the question(s) that you are continuing to answer at the top of the page.

Section one: Core conte This section has two (2) p	nt de la		40% (55 marks
Part A: Multiple choice	Answer all questions	10	10%
Part B: Extended answer	Answer all questions	45	30%
Suggested working time:	70 minutes		100.850.81.75
Which best describe to follow?	es the Engineering Desig	gn Process yo	u have been asked
b) Design, Make andc) Draw it, make it, So			/
d) Research, Develop	oment, Production, Evalua	310	
2. At what part of the	process would you be cre	eating a mater	ials and parts list?
a) Evaluate (b) Producing c) Research d) The End			
3. You are asked to dimportant?	design a child's toy, what	consideration	would be most
a) Cost			
b) Appearance			/
Safe Operation			V
d) Colour			
4. In an orthogonal d	rawing, what do Regular	Dashed Lines	represent?
a) Outlines b) Centre Lines C) Hidden Detail d) Cut Lines	The first first first first		
No C	ut lines		
	IN ORTHOGO	NAL	

			l, what do you rec	ognise as "Mild	Steel* as
- 5	When selecting	a type of stee	, what do you is	MATERIAL PROPERTY	
0.7513	referring to?				
	reterning to			/	
a	Colour of bar		51.2		
(6)	Low carbon con	tent	5/	Day Tokenia III	
(ع	High carbon cor	ntent			
	Weight			4 1 2 3 3 3 3	
6.	What is an Alloy	?	Martin III 11 111		
			CONPOSITE	1	
a)	Pure Ore		CONFO		
b)	A combination of	of materials	Care In Mid-1		
(0)	Two or more me	etals melted tog	gether	a harden a line	/
<u>a)</u>	Type of Alumini	um	_	13	
<i>9</i> 7.	If you were setti	ng up formworl	to pour a concre	te slab next to a	n existing
	wall, how could	you quickly and	d accurately check	that the end of	the formwork
	is 90 degrees to	the wall?	- ONE?		
125	Ś	NOT QU'VS	E 01 .	1	
(2)	is 90 degrees to Make a large try Trust your judge	square	loena a o-		Appendix on
-(6)	Trust your judge	ment A	RECORATE	_	X
	Measure both di	agonals to see	if they are equal	,	
0,	weasure the left	gin or end, diag	gonal and wall edg	ge and test using	Pythagoras
		N	or QUICK		
љ 8 .	An 80kg Toolbox	accidently roll	od off the sale of	_3/4	
P	a building site. Id	noring wind re	ed off the edge of	the fifth story (2	Om high) of
	Toolbox just befo	ore impact with	sistance etc calcul	late the Kinetic e	energy of the
6		p	the ground.		_ /
	3.85 kJ	FK	= 1 Mu2	4	/
	38.5kJ	C F	2 1	3841.6)
	50 kJ		100	00 11.0	and to you
d)	200 j		= 1 80		
	EP	= mrgrh =	80200		,
			80 × 9. 8 × 20	3 + 15680	J
9. To	Just before it rolle	ed over the edg	le, what was the -		
100	DIDOXY		e, what was the p	otential energy	of the
(a)	15.7 KJ			1.19	
b)	12 KJ		_		/
					/
c)	900 KJ			- A - T	
d)	9.5 KJ				

10. Which of these is a NON-RENEWABLE Source of Energy? a) Solar b) Wind c) Tidal d) Gas

Section one: Core content

Part B: Extended answer Answer all questions

(24 Marks)

All parts of this question refer to the simple Cast Block shown in the

Orthogonal drawing below.

1.A Using the page provided complete both <u>Isometric</u> and <u>Oblique</u> simple sketches of the Cast Block.

- To present the most ideal 3D representation
- Use a ruler to help keep lines reasonably straight
- Outline finished sketches but do not dimension

NB: Line angles can be estimated as long as they are consistent. Additional paper at

8 marks

1400 1200

ISOMETRIC

OBLIQUE

8 Opin

1.B Using the drawings as a guide, calculate the total surface area of the Cast Block

BOTTOM
$$80 \times 40 = 3200 \text{mm}^2$$
 $3200 + 2400 + 800$
TOP 1 $3200 - (20 \times 40) = 2400 \text{mm}^2$ $+ |600 + |200$
TOP 2 $20 \times 40 = 800 \text{mm}^2$ $+ |600 + |200$ $+ |2600 + |800$
FRONTIB $80 \times 21 + |600 \text{mm}^2|$ $+ |600 + |800|$ $+ |600 + |800|$
 $30 \times 40 = |200 \text{mm}^2|$ $= |4800 \text{mm}^2|$
 $30 \times 20 = |600 \text{mm}^2|$ $= |4800 \text{mm}^2|$
STE WOFKING
ON LAST PAGE

1.C. You have been asked to use the 3D printer to manufacture 12 of these cast blocks. Assuming they will be solid plastic (not hollow at all), calculate the total volume of plastic that will be consumed in their manufacture, ignoring wastage.

 $64000 + 24000 = 88000 \text{ mm}^3$ $88000 \times 12 = 1056000 \text{ mm}^3$ 12 Blocks4 marks

D	what would be their total mass?
If the 12 Cast Blocks were made with Acrylic,	88000 mm3= 8800cv
1CRYLIC-> 1190kg m-3	88000 mm = 000
1CK Tolo 1 117 OKY W	
22 12 12513	L>88mm3
88 × 12 × 105 6 m3	
0/0/00	24a 1180 = 1056
1056-1180-00	112 /4
	= 1.13 kg / 2 marks /
2= 4849	Zillidiks
The second second	
i) A second order of the same quantity was ma	ade, but to be cast in Aluminium. For
 A second order of the same quantity was managed backaging purposes what would be the differer 	nce in weight between the two orders?
ALUMINIUM DENSITY-> 27	10 kgm3
1000000	
2710 ÷ 1056 = 2.57	-ka total of 12
2710:1000-2001	CAR Bro
Company of the second	, Cos se
The state of the s	or the second of the second of
	3 marks
You have been asked to package the 12 item	es for delivery by parcel post and need
You have been asked to package the 12 hours to order a specific sized cardboard box.	
Suggest the minimal internal dimensions requirements of the surface of the surfac	uired for this box, assuming that the
Suggest the minimal internal dimensions requirements stack neatly together without iss	sue.
components stack nearly together with	
11 (1)	70 [20]
Length_160mm	70 30 7710
Width 120 mm.	. [20]] 10
Height 70mm	00 110
	0 160 70×80×40
80 8	0 (60 70 00 00
	3 marks
40	2
40	
120 40	10
10	, 10-1-1-1

Q2
The College is looking to save money on power usage by installing some form of renewable energy source.

A. Can you suggest two sources of renewable energy that could possibly utilized in this case?

SOLAR FOWER -> SOLAR ENERGY

HYDROKINETIC ENFRGY FROM DAM -> HIDA|
WIND ENFRGY FROM TURBINE 2

2 marks

B. Consider that it would take an investment of \$40,000 to set up and \$500 maintenance each year for a renewable energy system. If the College power bill was reduced \$5,000 each year, how many years would it take to pay for the cost of the system alone?

Y = \$500x + 40 000

L> +500x8=4000

TOTAL OVER 8 years

9 years \$4000

9 years \$4000

9 years \$4000

9 years \$4000

3 marks

A Large wind turbine was set up in the Southeast corner of the College grounds. The turbine without the 3 metre blades was 1.5 tonnes on a 35 metre stand or tower.

A. A delegation from the neighbouring Estate complained about the Wind Turbine. Can you suggest two concerns the neighbours may have with this installation?

NOWERSOUND FROM INSTALLING IT SOMEHOW

VIOLATES BUILDING/SAFETY RESTRICTIONS

NOT ALLOWED TO BUILD TURBINE.

THERE & 2.

= S14500 J

Lo S14.5K)

4

4 marks

C. Alas, just as the students were watching, for some reason the crane slings holding the Turbine in place on the tower snapped and the Turbine fell to the ground. Fortunately, nobody was injured. But the students could not help themselves as they quickly took out their calculators and worked out what the Kinetic energy of the Turbine was just before it hit the ground.

What would you calculate as the Kinetic Energy?

_tk= = mv2	ASSU TO
M=1500 kg x 9.82/2	> 72030)
= 144069J	= 72.03 k)
544406k	72.05P)
	V

DISTANCE MOVED

WORK = FS = 1.24 × 0.7	haft. SLADE = 0.75 m each blade?
F=1.24H	
S=0.75m	Table 1 Part of the second
	<u>-1</u>
The state of the s	
A	3 marks
ii). If the blades took 3 seconds to complete a regenerated?	evolution what is the power
P=E/+ OR FS/+	, t
FS=0.93NM2 -> 92	0930 NMM
t=3 seconds	active to
0.930 - 3 = 0.31	W (NIW)
0,700	2
	3 marks

Section two: Mechanical

Section two: Mechanical			60% (98 marks)
This section has two (2) part	S The state of the first state of the state		
Part A: Multiple choice A	nswer all questions	10	10%
Part B: Extended answer A	nswer all questions	88	50%
Suggested working time: 90) minutes	Alter Store	and the second of the second

1. A temporary strut holding a damaged roof is subject to a compressive force of 1.5 kn. What is the stress in the strut if the Cross-sectional area is 18mm²?

a) 400 Nmm² (b)) 83.3 Nmm² c) 27 Nmm²

2. Why can mild steel not be hardened and tempered?

- a) It's too soft -> HARD
- b) Gan't-see colour changes-
- (C) Insufficient carbon content
- d) _Cheap_

d) 12 Nmm²

3. How many Pascals in a Megapascal?

1000 000 a) 10 b) 1000 c) 1000,000 d) 1000,000.000

4. If it was calculated that reaction force B= 257.14 What must A =

a) 154 N b)_1.54 KN 6)342.86 N d) 2 KN Fy=0: A1B= 400×1200 y00×2+200×S = 600× 600+1000

A= 342324.86

1. HEAT IT TO LEMP

	0	THE PARTY OF	
5. Annealing is the	e process of:		1000
The heating an	d cooling of a metal to produce metal by compressive forces hardened steel below critical to	mperature AIP	NEALING NETENS
	LIEM PER.	L/	1
6. Strain in a bar u	under tension is best described	as:	1
c) The elongationd) The load applie	ength divided by the original le of the bar d to the bar	ngth of the bar	7
175	trions		T-9171 pt
7. If a 200 N force	is applied to a simple lever sys at is the mechanical advantage	of the system?	
a) 3 (b) 2	MA = Fout/Fin)	EFFORT
c) 4 d) 1	= 400/2	00	
7 7	=2		SCHOOL NO.
8. For the system raised the 400 N los system?	in Q7. The 200 N input pushed ad 600mm. What is the movem	the lever down 1	.2 m and tio of the
a) 4 b) 3	deflort	1200	/
d) 1	dload	600	
4			
A six speed geaWhich sprocket is the	red bicycle is ridden up hill in t ne chain engaged on the rear w	he lowest gear se	election.
a) Smallest	who real w	wieel?	
b) Largest c) Second			
d) Fourth		\odot	SEA LE II
		_	

10. A 6m long snatch strap used to pull a bogged 4-wheel drive vehicle, stretched 12mm during the event, what was the strain in the strap?

- b) 0.0002
- c) 0.004
- d) 0.00012

9

- Material for Cylinder Block 25 x 25mm Mild steel
- Bore and Piston Ø 19mm

1A. If the air compressor was set to deliver a pressure of 50kpa when the air was connected at the inlet port at the top of the cylinder (5), calculate the force with which the piston out stroked. When P=F/A

For reference 100 kpa is equivalent to 0.1Nmm

L> 28.353m².

1B. Suggest a change or addition to this design that could make the engine more efficient and how?

DIAMETER AS IT WILL HAVE A LARGER

SURFACE APEA OF FORCE, CREATING

MORE AIR PRESSURE to PUSH MORE

PRESSURE

1

2 marks

1C. Name an alternative material that could be used to make the piston. Describe two characteristics of that material.

BRASS -> MALLEABLE+ DUCTILE + PLASTIC

LO ANOTHER METAL WI PROPERTIES

LIKE MILD STEEZ

OR ALUMINIUM WHICH HAS SIMILAR PROPERTIES

(OULD USE ABS AND 30 3 marks)

PRINT IT, BUT IS BRITTLE, UNELASTIC

NOT MAULABLE OR

DESTILE

25×25 = 625 mm _ 45.4%.
-7 DA = 283.53 MA IS HOLE _
1D. It was decided to make a smaller version of the engine, using 20mm square mild steel instead of 25mm. (5.47. 0F 20×20 = 181.6 i) If you had to choose between 19, 16, 14, and 10mm diameter round bar for the piston, which would you use and why? (5.47. 0F BLOCK WAS DELUCED AND ATCLE)
LAST ASTON HAD 6 MM LEEWAY, TO MATCH
THIS IN ZOMM SQUARE, 16MM WOULD
APPROX SCALE DOWN TO SIZE (SEE WORKING
2. 2 marks
1 Ceny
ii) If the same pressure was applied to this newly constructed engine, what would the out-stroking force be in this case?
P=F/A 1Cmb
F=? P=0.05Nmm2 A=TT2=TTx = 201.06 mm
0.05 = F = 201.06
$F = 0.05 \times 201.06$ 4 4 marks

= 10.053N

(42 Marks)

It was decided to build a Gantry system in the shed at the back of E block. This was to enable the raising and moving of heavy items such as Engine Blocks.

The Gantry consisted of a Large I beam (RSJ) that spanned the width of the shed and protruded through the external walls a short distance. The beam was supported by two large struts of the same material.

2A. Draw a Force Diagram of the Gantry System (on the next Page), when:

- The I beam constitutes a Uniformly distributed load of 1 Tonne which is considered to be acting in the middle of the beam
- The block and tackle apparatus is located 800mm from the centre of the strut B and has a mass of 100kg
- An 800kg engine block is suspended from the block and tackle.

2B. Calculate the reaction force in strut B	3 marks KU= (ON
MR1 = O = ZCWM = ZACWM	7 2 10
= R2 × DISTANCE TO = FXO = 1000 04x	2+ 100kg/3-20×320
= R2 × D+ = 20000x 28800x 4880	0,00
R2×4=4880995 -> 12= 4188600	\$ 12200NIN
¥	3)

2C. Therefore, what is the reaction force in Strut A?

2c. Therefore, what is the reaction folds in other
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1$

3

2D. If the engine was suspended from the block and tackle by two straps (Ø 8.5mm each) which carried the load equally?

Calculate the stress in each strap.

$$F = Mg = 800 \times 9.8 = 7840 \text{ N}$$

$$A = \Pi \Gamma^2 = \Pi \times 4.25^2 = 56.75 \text{ mm}^2$$

$$O = 7840/56.75 = 138.15 \text{ N mm}^2$$

Each strap was found to stretch under load 1.4mm. Calculate the strain if the straps were 1 metre long.

the straps were 1 metre long.
$$\mathcal{E} = \frac{DL}{L} = \frac{1.9 \, \text{mm}}{1000 \, \text{run}} = 0.0019 \, \mathcal{E}$$

Using your calculations determine what the Youngs modulus of the strap material must be.

L= SL E

2E) Assuming the straps had to be replaced with a material that could only be worked to a safe working stress of 50 Nmm².

What minimum diameter strap of this material could be used if the set up was otherwise exactly the same? (If unsure of load refer to information at start of question

$$d = 2 \int_{1}^{A} A = \frac{7840}{500000}$$

4

7 marks

2F. What would the extension in the strap be under load if the Young's Modulus of

this material was
$$60 \text{kN/mm}^{2?}$$

$$\frac{60000 = FL}{A\Delta L} = \frac{5}{E}$$

$$= \frac{7840 \times 1000 \text{ J}}{156.8 \Delta L}$$

9408000DL=7840000

4 marks

2G. The two struts that support the beam, and subsequent loads are constantly under compression. These are made from Structural Steel square hollow section 100mm with a 5mm wall thickness.

Calculate the compressive stress in member "B" using the resistant force calculated for that member in the previous question 2B.

Nb. Use 12 kN as the resistant force if you did not complete the question. RES FORCE > 12200 N

A=100 mm ×100 mm -(90 x 90) U

1200 mm2

5 marks

100

100

= 6.4214mm H

The diagram below is that of a Bicycle Brake lever.

A. i) Label the diagram where load and effort would be applied

2

2 marks

ii) If the system is in Equilibrium show that the force at R= 200N

B. i) Determine the Mechanical Advantage of the system assuming no loss of efficiency due to friction etc.

$$MA = \frac{fout}{FIN} = \frac{LUAO}{EFFORT} = \frac{200}{40} = 5$$
2 marks

todas turing	50 ÷ 20 = 2.5
	2 ma
C. What is the	Torque in the System when the given force is applied?
WHERE	S TURNING AND BREAK IS A
	ACTION OF BREAKS.
Amany 21	his are quite often made by costing them will a Atuaria!
alloys.	his are quite often made by casting them using Aluminium or A
i) Suggest method?	why a company would produce items such as Brake levers by
i) Suggest method?	why a company would produce items such as Brake levers by
i) Suggest method?	why a company would produce items such as Brake levers by EFFICIENT, DOES NOT DEG
i) Suggest method? COST MUCIA TIM ii) Castings	why a company would produce items such as Brake levers by EFFICIENT, DOES NOT REG ET LABOUR AND IS DONE BY PART MACITINE 2 marks like these have been known to crack or break. Can you suggestly they may break?

LOAD

EFFORT

iii) If you had all the facilities available and cost was not a factor, suggest a method of manufacture you could use to make a stronger lever or handle.

AL YIRD STRENGTH = UPENAMOR TENSILE = ISONMA?

ONE WITH HIGHER YIELD+ UTS IS MILD

STEEL- YIELD STRENGTH IS HOW MUCH FORCE

IS NEED UNTIL METAL DEFORMS

UTS IS WHEN METAL STARTS TO NECK

MILD STEEL YIELD STRENGTH = 280 Numa?

UTS = 470 Numa?

HENCE MOKE DURABLE

Select Two only from these images.

Identify the basic mechanism. Give another example, then describe the principle involved. I.e., How it is used to gain Mechanical advantage and adjust the Velocity ratio.

Image A
Mechanism WHEEL
Other Example MECTIANICAL SHARPENER
TOWER FAN 2 marks 2 How can it provide mechanical advantage? (SPOKES GIVES MORE SPACE TO TURN OVER AN AREA
WHICH PULLS HEAVY WEIGHT (BUCKET)
2
2 marks
How can you change the Velocity ratio? [REATE A LAPGER OUTER WHEEZ TO INNER
WHEEL RATIO, CHANGE WEIGHT OF BUCKET
2 marks

End of Exam

150 METRIC

